skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Washington, B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Measurements collected by a Remote Environmental Monitoring Units (REMUS) 600 autonomous underwater vehicle (AUV) off the coast of southern California demonstrate large-scale coherent wave-driven vortices, consistent with Langmuir turbulence (LT), and played a dominant role in structuring turbulent dissipation within the oceanic surface boundary layer. During a 10-h period with sustained wind speeds of 10 m s−1, Langmuir circulations were limited to the upper third of the surface mixed layer by persistent stratification within the water column. The ensemble-averaged circulation, calculated using conditional averaging of acoustic Doppler dual current profile (AD2CP) velocity profiles using elevated backscattering intensity associated with subsurface bubble clouds, indicates that LT vortex pairs were characterized by an energetic downwelling zone flanked by broader, weaker upwelling regions with vertical velocity magnitudes similar to previous numerical studies of LT. Horizontally distributed microstructure estimates of turbulent kinetic energy dissipation rates were lognormally distributed near the surface in the wave mixing layer with the majority of values falling between wall layer scaling and wave transport layer scaling. Partitioning dissipation rates between downwelling centers and ambient conditions suggests that LT may play a dominant role in elevating dissipation rates in the ocean surface boundary layer (OSBL) by redistributing wave-breaking turbulence. 
    more » « less
  2. Abstract Gravity waves dispersing upward through the tropical stratosphere during opposing phases of the QBO are investigated using ERA5 data for 1979–2019. Log–log plots of two-sided zonal wavenumber–frequency spectra of vertical velocity, and cospectra representing the vertical flux of zonal momentum in the tropical lower stratosphere, exhibit distinctive gravity wave signatures across space and time scales ranging over two orders of magnitude. Spectra of the vertical flux of momentum are indicative of a strong dissipation of westward-propagating gravity waves during the easterly phase and vice versa. This selective “wind filtering” of the waves as they disperse upward imprints the vertical structure of the zonal flow on the resolved wave spectra, characteristic of (re)analysis and/or free-running models. The three-dimensional structures of the gravity waves are documented in composites of the vertical velocity field relative to grid-resolved tropospheric downwelling events at individual reference grid points along the equator. In the absence of a background zonal flow, the waves radiate outward and upward from their respective reference grid points in concentric rings. When a zonal flow is present, the rings are displaced downstream relative to the source and they are amplified upstream of the source and attenuated downstream of it, such that instead of rings, they assume the form of arcs. The log–log spectral representation of wind filtering of equatorial waves by the zonal flow in this paper can be used to diagnose the performance of high-resolution models designed to simulate the circulation of the tropical stratosphere. 
    more » « less
  3. Abstract Rain in tropical cyclones is studied using eight time series of underwater ambient sound at 40–50 kHz with wind speeds up to 45 m s−1beneath three tropical cyclones. At tropical cyclone wind speeds, rain- and wind-generated sound levels are comparable, and therefore rain cannot be detected by sound level alone. A rain detection algorithm that is based on the variations of 5–30-kHz sound levels with periods longer than 20 s and shorter than 30 min is proposed. Faster fluctuations (<20 s) are primarily due to wave breaking, and slower ones (>30 min) are due to overall wind variations. Higher-frequency sound (>30 kHz) is strongly attenuated by bubble clouds. This approach is supported by observations that, for wind speeds < 40 m s−1, the variation in sound level is much larger than that expected from observed wind variations and is roughly comparable to that expected from rain variations. The hydrophone results are consistent with rain estimates by the Tropical Rainfall Measuring Mission (TRMM) satellite and with Stepped-Frequency Microwave Radiometer (SFMR) and radar estimates by surveillance flights. The observations indicate that the rain-generated sound fluctuations have broadband acoustic spectra centered around 10 kHz. Acoustically detected rain events usually last for a few minutes. The data used in this study are insufficient to produce useful estimation of rain rate from ambient sound because of limited quantity and accuracy of the validation data. The frequency dependence of sound variations suggests that quantitative rainfall algorithms from ambient sound may be developed using multiple sound frequencies. Significance StatementRain is an indispensable process in forecasting the intensity and path of tropical cyclones. However, its role in the air–sea interaction is still poorly understood, and its parameterization in numerical models is still in development. In this work, we analyzed sound measurements made by hydrophones on board Lagrangian floats beneath tropical cyclones. We find that wind, rain, and breaking waves each have distinctive signatures in underwater ambient sound. We suggest that the air–sea dynamic processes in tropical cyclones can be explored by listening to ambient sound using hydrophones beneath the sea surface. 
    more » « less
  4. Abstract A hierarchy of general circulation models (GCMs) is used to investigate the linearity of the response of the climate system to changes in Antarctic topography. Experiments were conducted with a GCM with either a slab ocean or fixed SSTs and sea ice, in which the West Antarctic ice sheet (WAIS) and coastal Antarctic topography were either lowered or raised in an idealized way. Additional experiments were conducted with a fully coupled GCM with topographic perturbations based on an ice-sheet model in which the WAIS collapses. The response over the continent is the same in all model configurations and is mostly linear. In contrast, the response has substantial nonlinear elements over the Southern Ocean that depend on the model configuration and are due to feedbacks with sea ice, ocean, and clouds. The atmosphere warms near the surface over much of the Southern Ocean and cools in the stratosphere over Antarctica, whether topography is raised or lowered. When topography is lowered, the Southern Ocean surface warming is due to strengthened southward atmospheric heat transport and associated enhanced storminess over the WAIS and the high latitudes of the Southern Ocean. When topography is raised, Southern Ocean warming is more limited and is associated with circulation anomalies. The response in the fully coupled experiments is generally consistent with the more idealized experiments, but the full-depth ocean warms throughout the water column whether topography is raised or lowered. These results indicate that ice sheet–climate system feedbacks differ depending on whether the Antarctic ice sheet is gaining or losing mass. Significance StatementThroughout Earth’s history, the Antarctic ice sheet was at times taller or shorter than it is today. The purpose of this study is to investigate how the atmosphere, sea ice, and ocean around Antarctica respond to changes in ice sheet height. We find that the response to lowering the ice sheet is not the opposite of the response to raising it, and that in either case the ocean surface near the continent warms. When the ice sheet is raised, the ocean warming is related to circulation changes; when the ice sheet is lowered, the ocean warming is from an increase in southward atmospheric heat transport. These results are important for understanding how the ice sheet height and local climate evolve together through time. 
    more » « less
  5. Abstract Arctic surface warming under greenhouse gas forcing peaks in winter and reaches its minimum during summer in both observations and model projections. Many mechanisms have been proposed to explain this seasonal asymmetry, but disentangling these processes remains a challenge in the interpretation of general circulation model (GCM) experiments. To isolate these mechanisms, we use an idealized single-column sea ice model (SCM) that captures the seasonal pattern of Arctic warming. SCM experiments demonstrate that as sea ice melts and exposes open ocean, the accompanying increase in effective surface heat capacity alone can produce the observed pattern of peak warming in early winter (shifting to late winter under increased forcing) by slowing the seasonal heating rate, thus delaying the phase and reducing the amplitude of the seasonal cycle of surface temperature. To investigate warming seasonality in more complex models, we perform GCM experiments that individually isolate sea ice albedo and thermodynamic effects under CO2forcing. These also show a key role for the effective heat capacity of sea ice in promoting seasonal asymmetry through suppressing summer warming, in addition to precluding summer climatological inversions and a positive summer lapse-rate feedback. Peak winter warming in GCM experiments is further supported by a positive winter lapse-rate feedback, due to cold initial surface temperatures and strong surface-trapped warming that are enabled by the albedo effects of sea ice alone. While many factors contribute to the seasonal pattern of Arctic warming, these results highlight changes in effective surface heat capacity as a central mechanism supporting this seasonality. Significance StatementUnder increasing concentrations of atmospheric greenhouse gases, the strongest Arctic warming has occurred during early winter, but the reasons for this seasonal pattern of warming are not well understood. We use experiments in both simple and complex models with certain sea ice processes turned on and off to disentangle potential drivers of seasonality in Arctic warming. When sea ice melts and open ocean is exposed, surface temperatures are slower to reach the warm-season maximum and slower to cool back down below freezing in early winter. We find that this process alone can produce the observed pattern of maximum Arctic warming in early winter, highlighting a fundamental mechanism for the seasonality of Arctic warming. 
    more » « less
  6. Abstract We present idealized simulations to explore how the shape of eastern and western continental boundaries along the Atlantic Ocean influences the Atlantic meridional overturning circulation (AMOC). We use a state-of-the art ocean–sea ice model (MOM6 and SIS2) with idealized, zonally symmetric surface forcing and a range of idealized continental configurations with a large, Pacific-like basin and a small, Atlantic-like basin. We perform simulations with five coastline geometries along the Atlantic-like basin that range from coastlines that are straight to coastlines that are shaped like the coasts of the American and African continents. Changing the Atlantic basin coastline shape influences AMOC strength in a manner distinct from simply increasing basin width: widening the basin while maintaining straight coastlines leads to a 10-Sv (1 Sv ≡ 106m3s−1) increase in AMOC strength, whereas widening the basin with the geometry of the American and African continents leads to a 6-Sv increase in AMOC strength, despite both cases representing the same average basin-width increase relative to a control case. The structure of AMOC changes are different between these two cases as well: a more realistic basin geometry results in a shoaled AMOC while widening the basin with straight boundaries deepens AMOC. We test the influence of the shape of the both boundaries independently and find that AMOC is more sensitive to the American coastline while the African coastline impacts the abyssal circulation. We also find that AMOC strength and depth scales well with basin-scale meridional density difference, even with different Atlantic basin geometries, illuminating a robust physical link between AMOC and the North Atlantic western boundary density gradient. 
    more » « less